Vierter Sachstandsbericht Tongrube und Verfüllung Mühlenberg (Hünxe/Schermbeck): Ergebnisse der Machbarkeitsuntersuchung

19.03.2024

Dr. Michael Kerth

Abschließende Kernaussagen der Gefährdungsabschätzung

- Bei Aufrechterhaltung der gegenwärtig laufenden Sickerwasserfassung,
 -ableitung und -behandlung keine Gefährdung von Schutzgütern (hier v. a. Grund- und Oberflächenwasser, menschliche Gesundheit) vorhanden.
- Zur Aufrechterhaltung des gefahrlosen Zustandes sind bautechnische Maßnahmen an der Tongrube (Ertüchtigung Sickerwasserfassung und vollständige Anbindung OFA an Tonkeil) einschließlich des Betriebs einer Sickerwasserfassung und -behandlung erforderlich. Ziel dieser Maßnahmen ist es, die entstehende Sickerwassermenge in der Tongrube zu minimieren und den Sickerwasserspiegel in der Verfüllung dauerhaft unterhalb eines bestimmten nicht-kritischen Niveaus zu halten. Damit wird ein Sickerwasserübertritt in das Grundwasser und in die Randgräben unterbunden.
- Weiterhin sind langfristig Überwachungsmaßnahmen erforderlich: Kontrolle der technischen Einrichtungen, regelmäßige Untersuchung von Sickerwasser und Grundwasser, Kontrolle des Setzungsverhaltens.

Aus der Gefährdungsabschätzung resultierende Aufgaben

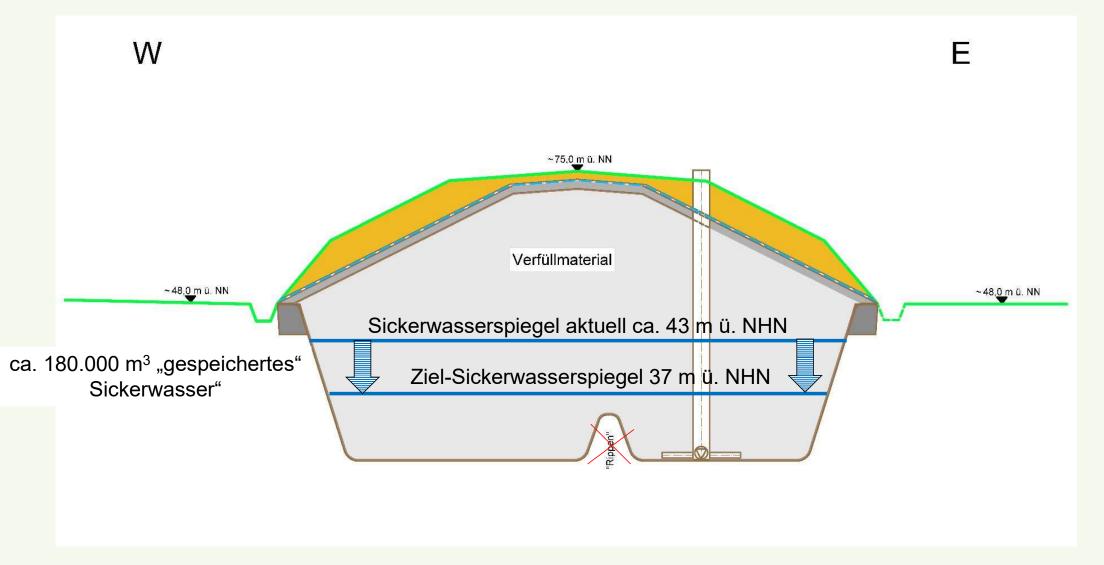
- Machbarkeitsuntersuchung (siehe nachfolgende Folien)
- Weitere Aufgaben/Maßnahmen:
 - Beseitigung der festgestellten baulichen Mängel an der Randabdichtung (Herstellung einer vollständigen Anbindung des "Tonkeils" an die Oberflächenabdichtung)
 - Ertüchtigung/Instandhaltung der Randgräben
 - Fortführung des Sickerwassermonitorings

Machbarkeitsuntersuchung

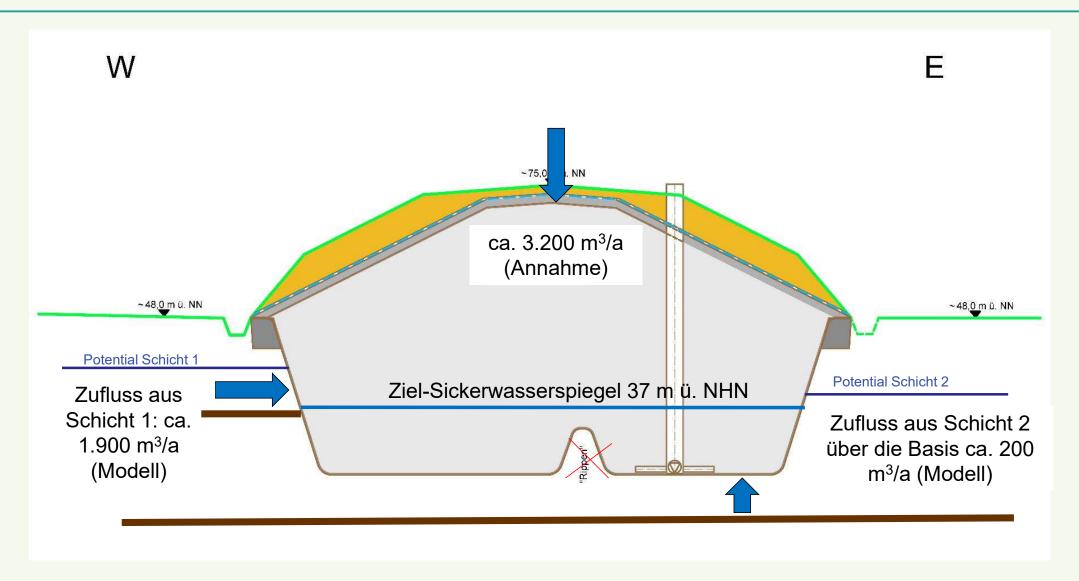
- Im Anschluss an die Gefährdungsabschätzung: Machbarkeitsuntersuchung zur Ermittlung angemessener und geeigneter bautechnischer Sanierungsmaßnahmen durch die Asmus + Prabucki Ingenieure Beratungsgesellschaft mbH im Auftrag der Hermann Nottenkämper GmbH & Co. KG (Grundlage: öffentlich-rechtlicher Vertrag zwischen Fa. Nottenkämper und Kreis Wesel).
- Begleitung auch dieses Arbeitsschritts durch die vom MUNV geleitete Koordinierungsgruppe (MUNV NRW, Bez.-Reg. Düsseldorf, Kreis Wesel einschl. der Gutachter/Berater des Kreises).
- Vorlage Endfassung Machbarkeitsstudie: 19.12.2023

Ausgangspunkte für die Machbarkeitsuntersuchung (1)

- Nach Modellierungsergebnissen zu erreichendes Absenkziel des Sickerwasserspiegels in der Verfüllung: 37 m ü. NHN
- Angenommene Sickerwasserspeichermenge im Verfüllkörper, die zur Erreichung des Absenkziels abgepumpt und behandelt werden muss: 180.000 m^{3*})
- Absenkziel soll innerhalb längstens 10 Jahren erreicht werden.
- Angenommene jährliche Sickerwasserneubildung nach Erreichen des Absenkziels
 - aus angenommenen Imperfektionen der Oberflächenabdichtung**): ca. 3.200 m³/a
 - aus seitlichem Zutritt von Grundwasser in die Verfüllung ***):
 ca. 1.900 m³/a
 - aus vertikalem Zutritt von Grundwasser über die Basis ***):
 <u>ca.</u> 200 m³/a


ca. 5.300 m³/a

^{*)} Absenkung von gegenwärtig im Mittel ca. 43 m ü. NHN auf im Mittel 37 m ü. NHN, angenommenes nutzbares Porenvolumen ca. 10 Vol-%


^{**)} angenommene Restdurchsickerung der Oberflächenabdichtung 15 mm/a, Oberfläche ca. 216.000 m²

^{***)} Modellergebnisse

Ausgangspunkte für die Machbarkeitsstudie (2)

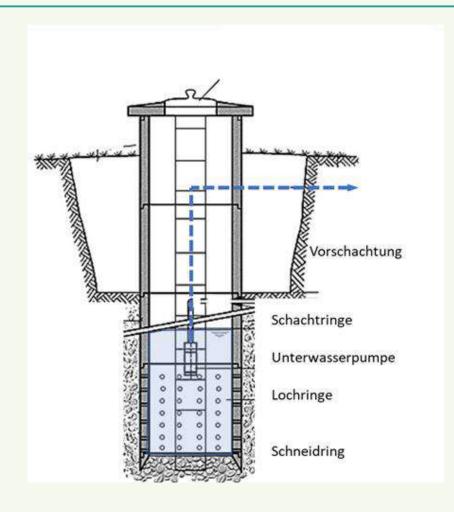
Ausgangspunkte für die Machbarkeitsstudie (3)

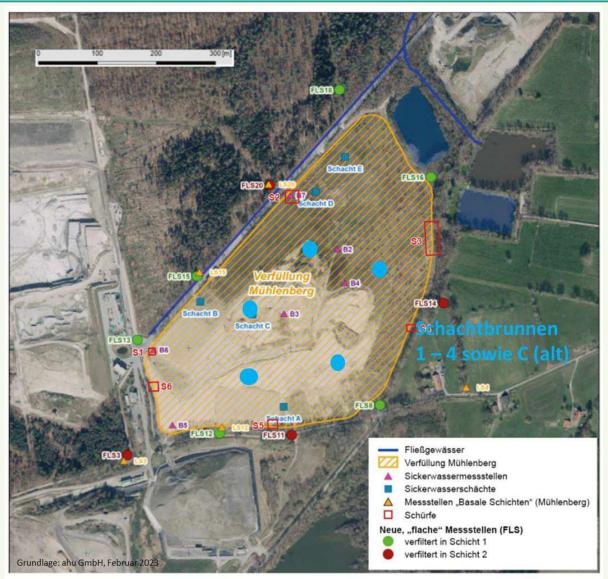
Kriterien für die Bewertung der Machbarkeit/Eignung verschiedener Verfahren

	Kriterien für die Bewertung der Machbarkeit							
>	Funktionalität	> Betriebliche Aspekte						
>	Realisierbarkeit	Dauerhafter Betrieb Ersatzbeschaffung						
>	Robustheit	Rechtliche Aspekte						
>	Reparierbarkeit	Genehmigungen Zustimmung Dritter						
>	Realisierungsdauer	> Investitionskosten						
>	Umweltauswirkungen							
>	Arbeitsschutz	> Betriebskosten						

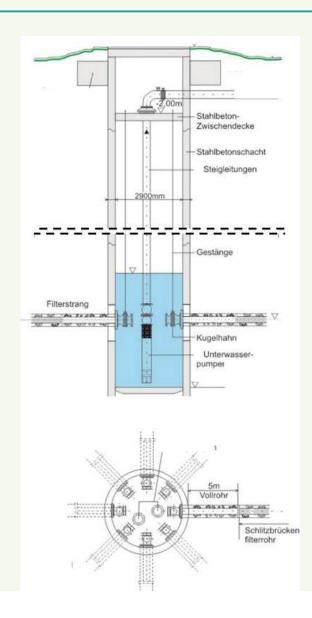
8

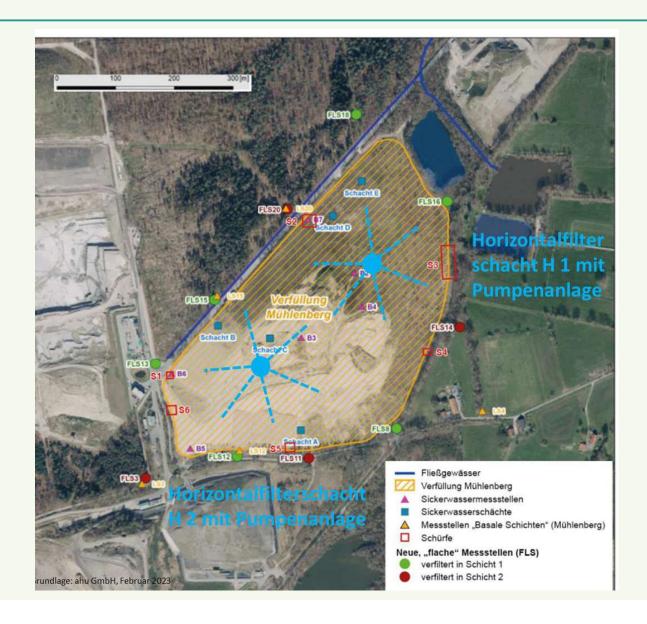
Betrachtete Verfahren zur Sickerwasserentnahme

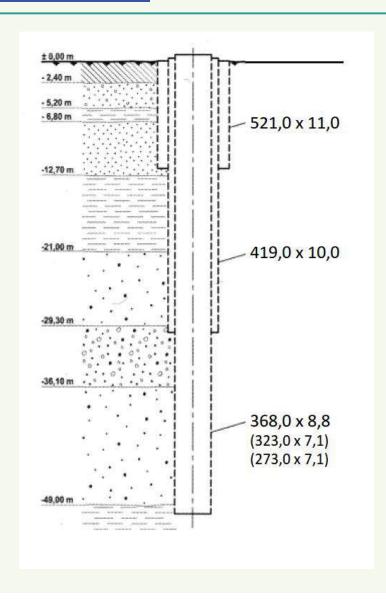

Fördereinrichtungen, die ausschließlich innerhalb des Verfüllkörpers realisiert werden können:


- Vertikalbrunnen als Schachtbrunnen
 - Sanierung/Umbau der vorhandenen Schachtbrunnen
 - Neubau von Schachtbrunnen
- Horizontalfilterbrunnen mit vertikalem Zentralschacht
- Vertikalbrunnen als Bohrbrunnen

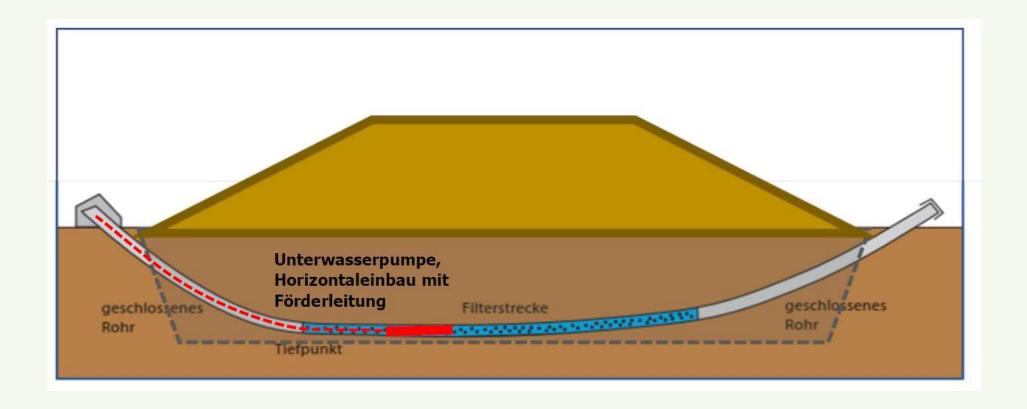
Fördereinrichtungen, bei denen Teile außerhalb des Verfüllkörpers liegen:


- HDD-("Horizontal Directional Drilling")-Brunnen mit Start und Endpunkt außerhalb der Verfüllung
- Microtunneling-Vortriebs-Verfahren mit Anfangs- und Endschächten außerhalb der Verfüllung

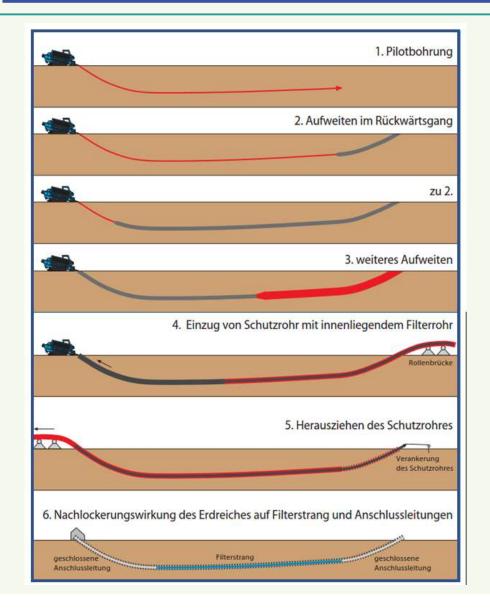

Vertikalbrunnen als Schachtbrunnen

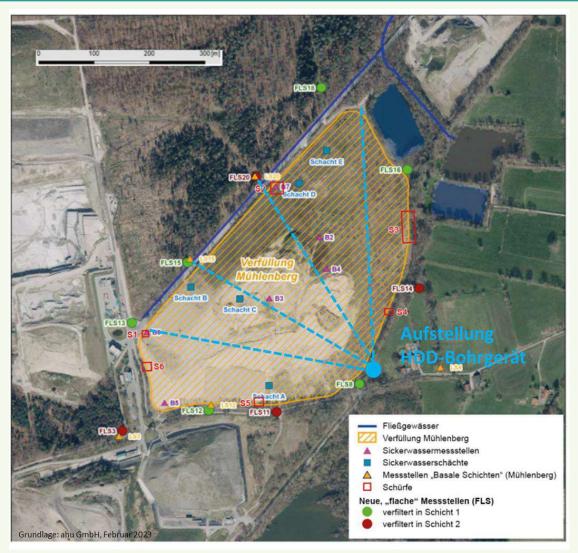


Horizontalfilterbrunnnen

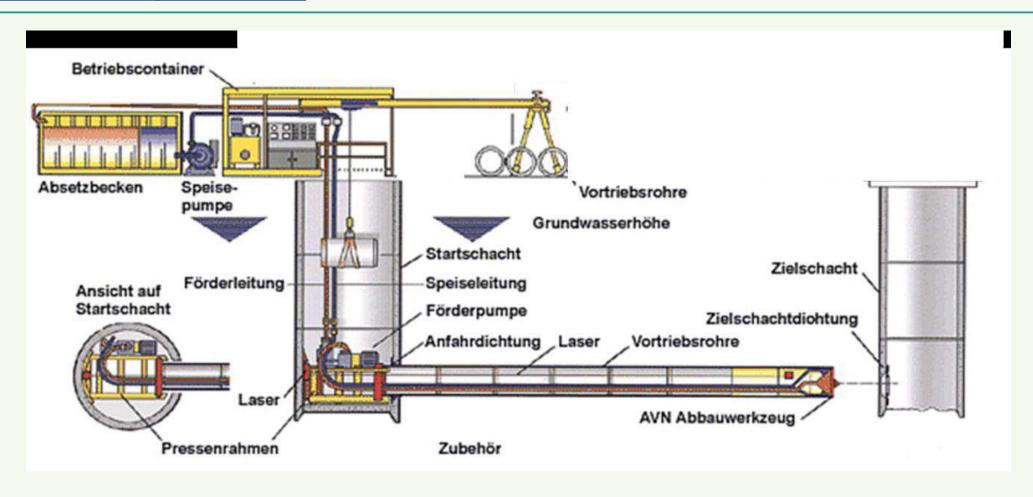


Bohrbrunnen

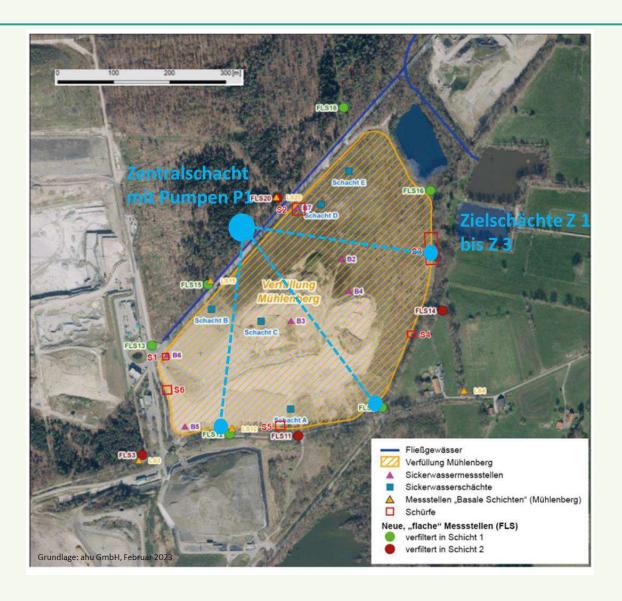




Horizontalbrunnen mittels HDD-Verfahren



Horizontalbrunnen mittels HDD-Verfahren



Microtunneling-Verfahren

Microtunneling-Verfahren

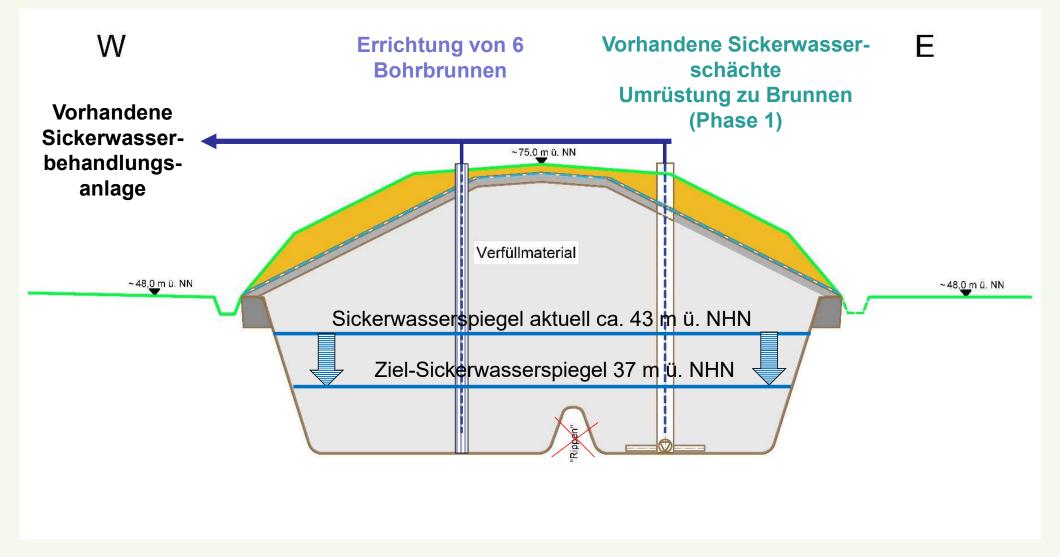
Bewertung der Verfahren in der Machbarkeitsstudie

Kriterienkatalog Hauptkriterium	Schachtbrunnen	Horizontalfilter- brunnen	Bohrbrunnen	HDD-Brunnen	Mikrotunneling - Schachtbrunnen
Funktionalität	moderat	gut	moderat	gut	gut
Tunktionalitat	3	4	3	4	4
Realisierbarkeit	moderat	schwierig	gut	moderat	schwierig
Treamster Burkere	3	2	4	3	2
Robustheit	hoch	moderat	hoch	moderat	moderat
	4	3	4	3	3
Reparierbarkeit	moderat	aufwendig	einfach	moderat	aufwendig
,	3	2	4	3	2
Realisierungsdauer	schnell	langsam	sehr schnell	moderat	sehr langsam
***	4	2	5	3	1
Umweltauswirkungen	moderat	moderat	gering	hoch	sehr hoch
	3	3	4	2	1
Arbeitsschutz	einfach	aufwendig	sehr einfach	moderat	sehr aufwendig
	4	2	5	3	1
Dauerhaftigkeit	gut	moderat	gut	moderat	moderat
	4	3	4	3	3
Genehmigung	moderat	moderat	einfach	aufwendig	sehr aufwendig
	3	3	4	2	1
Summe	31	24	37	26	18

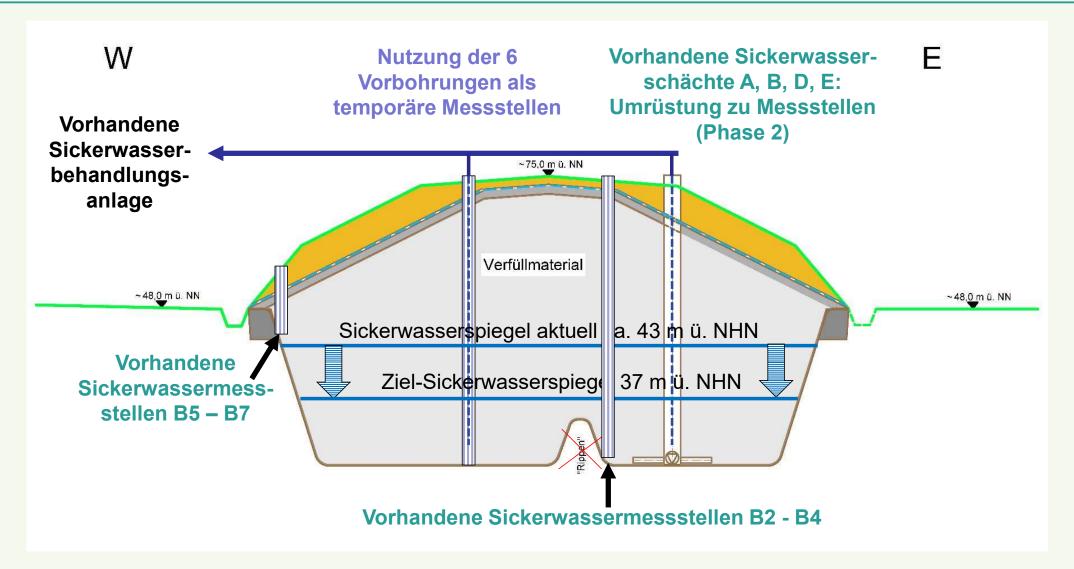
Bewertung der Kosten

Investitionskosten:

Bohrbrunnen < Schachtbrunnen < HDD-Brunnen < Horizontalfilterbrunnen < Microtunneling

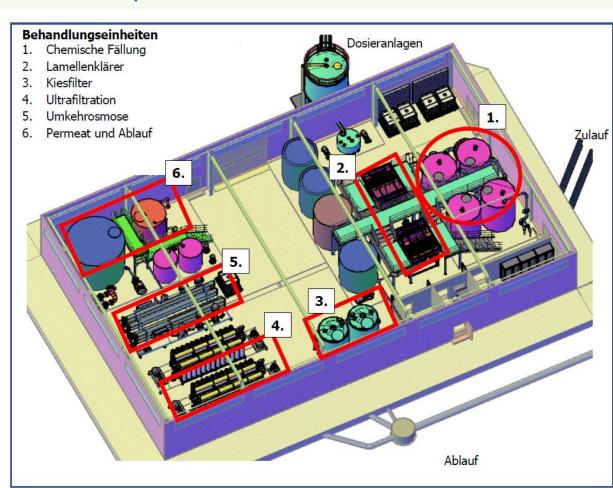

Betriebskosten:

Pump- und Sickerwasserbehandlungskosten bei den Verfahren näherungsweise gleich; Wartungs- und Reparaturkosten bei Bohr- und Schachtbrunnen deutlich geringer als bei den anderen Verfahren.


<u>Vorzugsvariante – Geplante Umsetzungsphasen</u>

- Weiternutzung der bestehenden Schachtbrunnen bis zur
- Errichtung und Inbetriebnahme von 6 Bohrbrunnen
- Umbau der Schachtbrunnen (Verkiesung, Einsetzen Filterrohre)
- Nutzung der Bohr- und Schachtbrunnen zur möglichst raschen Absenkung des Sickerwasserspiegels auf das Zielniveau 37 m ü. NHN, dann
- Außerbetriebnahme der Schachtbrunnen A, B, D, E; Weiternutzung als Messstellen
- Dauerhafte Sickerwasserförderung aus den 6 Bohrbrunnen und dem umgebauten Schacht C, Halten des Zielniveaus 37 m ü. NHN

Vorzugsvariante: Sickerwasserfassung



Vorzugsvariante: Sickerwasseronitoring

Sickerwasserbehandlung

- Nutzung der freien (und ausreichenden) Kapazitäten der Sickerwasserbehandlungsanlage für die Deponie Eichenallee
- Mehrstufige Behandlung:
 - Chemisch-physikalische Behandlung (Fällung, Flockung, pH-Wert-Einstellung)
 - Ultrafiltration/Umkehrosmose
- Bei Einhaltung der Grenzwerte nach der ersten Behandlungsstufe ggf. LKW-Transport zur Kläranlage Emschermündung (Indirekteinleitung)
- Nach der zweiten Behandlungsstufe Direkteinleitung in den Wesel-Datteln-Kanal

Phase 1

Zeitabschnitt	Maßnahmen	Monitoring	
0	Vorlaufende Maßnahmen: Vorsondie- rung, Peilrohre	Einbau von manuell auszulesenden Divern	
1-a	Bau der Bohrbrunnen, Rohrleitungen zur Sickerwasserreinigungsanlage, Au- tomatisierung der Pumpensteuerung	Einbau Diver in Bohrbrunnen, Daten- leitungen zur Schaltzentrale, Kalibrierung, Funktionstest	
1-b	Einfahrbetrieb Bohrbrunnen	Kontinuierliche messtechnische Be- gleitung der Einzelmaßnahmen, Funktionskontrollen	
1-c	Umbau der Schachtbrunnen, Ertüchtigung der Standsicherheit	Einbau Diver in Schachtbrunnen, Integration in das gesamte Messnetz	
1-d	Einfahrbetrieb der umgebauten Schachtbrunnen	Kontinuierliche messtechnische Be- gleitung der Einzelmaßnahmen, Funktionskontrollen	
1-e	Optimierung des Regelbetriebes, An- passung der Einzelförderungen zum Er- reichen des Absenkzieles	Kontinuierliche messtechnische Be- gleitung der Optimierungsuntersu- chungen	
1-f	Erreichen des Absenkzieles für die Phase 1 bei 37 m NHN	Datenerfassung einer abschließen- den Messkampagne zum Nachweis der Beendigung der Phase 1	

Schachtbrunnen **Betrieb** Schachtbrunnen **Betrieb**

Betrieb Bohrbrunnen

Phase 1

Phase 2

Kostenschätzung - Investitionskosten

Titel	Bauleistung* sowie Anlagenbau	Investitionskosten
1.	Sickerwasserförderung + Sickerwassermonitoring	1.543.000 €
2.	Sickerwasserableitung	350.000 €
3.	Stromversorgung und Messdatenerfassung	412.000 €
	Zwischensumme netto	2.305.000 €
	Reserve für Anpassungen netto	250.000 €
	Gesamtsumme netto	2.555.000 €

^{*} Bei der Kostenschätzung wurden die durch die Firma Nottenkämper erzielbaren Preiskonditionen beim Konzerneinkauf von Baumaterialien sowie die Übernahme von Teilbauleistungen mit eigenem Personal zum Selbstkostenpreis berücksichtigt.

Kostenschätzung – Betriebskosten pro Jahr

Kosten für Wartung und Instandhaltung

- ca. 40.000 € netto
- Kosten für **Sickerwassermonitoring**, **Datenauswertung** ca. 25.000 € netto
- Kosten für die **Sickerwasserbehandlung** 12,50 €/m³
 - Phase 1 ca. 30.000 m³/a

- pro Jahr ca. 375.000 € netto

Phase 2 ca. 5.200 m³/a

- pro Jahr ca. 65.000 € netto

Und jetzt: Ihre Fragen, Ihre Anmerkungen und Ihre Kritik ...

